
Log Abstraction for Information Security: Heuristics
and Reproducibility

Abstract
The collection of log messages regarding the operation of de-
ployed services and application is an integral component to
the forensic analysis for the identification and understanding
of security incidents. Approaches for parsing and abstrac-
tion of such logs, despite widespread use and study, do not
directly account for the individualities of the domain of in-
formation security. This, in return, limits their applicability
on the field. In this work, we analyze the state-of-the-art log
parsing and abstraction algorithms from the perspective of
information security. First, we reproduce / replicate previ-
ous analysis of such algorithms from the literature. Then,
we evaluate their ability for parsing and abstraction of log
files for forensic analysis purposes. Our study demonstrates
that while the state-of-the-art techniques are accurate in log
parsing, improvements are necessary in terms of achieving a
holistic view to aid in forensic analysis for the identification
and understanding of security incidents.

CCS Concepts: • Security and privacy → Intrusion de-
tection systems; Distributed systems security.

Keywords: application logs, system logs, information secu-
rity, abstraction

ACM Reference Format:
. 2021. Log Abstraction for Information Security: Heuristics and Re-
producibility. In 3rd International Workshop on Information Security
Methodology and Replication Studies (IWSMR 2021), August 17–21,
2021, All Digital Conference. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/1122445.1122456

1 Introduction
An integral component of network / service operations and
management pertains to the identification and understand-
ing of security incidents when problems occur in the hard-
ware/software components of the network. However, the
complex interdependence between coupled networking and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IWSMR ’21, August 17–20, 2021, All Digital Conference
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

service functionalities poses a significant challenge in char-
acterizing an alert. This is due to the fact that such messages
can be generated by network/system/service elements be-
yond the actual source of the event. In this research, we are
interested in log parsing and abstraction of events and alerts
from messages generated by different services for security
incident analysis. By way of example, this might include logs
of enterprise environments such as web servers (e.g. Apache,
NGINX), intrusion detection systems (e.g. Snort, Suricata,
Zeek), firewalls (e.g. ufw, iptables), operating system logs
(e.g. Windows, macOS, Linux), and core internet protocols
(e.g. DNS, HTTP, FTP).

In most operational networks, all messages and alarms
from distributed network / service elements are logged with
time stamps into data logs. The logs from different elements
could be pooled together in a central database for subsequent
analysis. While log analysis has been studied in the literature
in multiple contexts, we maintain that previous approaches
have adopted techniques that fail to address the broad range
of log files and/or are not specific enough to security issues.
Our goal is to provide holistic insights into threats and ma-
licious activity by way of forensic incident analysis in log
pools. In this work, we analyze how the current state-of-the-
art in log parsing and abstraction handles security-related
logs and how they could be evaluated in such context.
The rest of the paper is organized as follows. Section 2

summarizes related literature while corresponding replica-
tion (reproduced) experiments are presented in Section 3. A
novel method for evaluating log parsing and abstraction al-
gorithms for security analysis is then presented in Section 4.
A set of heuristics for measuring the relevance of the results
is proposed and evaluated in Section 5. Finally, conclusions
are drawn and future work is presented in Section 6.

2 Related Works
Previous literature has proposed many approaches to auto-
matic log parsing and abstraction by analyzing data from dif-
ferent system/network/service components. In general, three
types of data sources are assumed: (i) system logs [20, 21],
(ii) network logs [7, 13], and (iii) service/application logs
[8, 27]. System logs seem to have received the most attention
as a source for automatic log parsing and abstraction for
alert detection, root-cause analysis and monitoring. Several
commercial and open source tools provide event log moni-
toring tools. Specific examples include [1–6]. Recently, Zhu
et. al. [34] and El Masri et. al. [10] reviewed and compared

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

IWSMR ’21, August 17–20, 2021, All Digital Conference

log parsing and abstraction tools/algorithms and compared
their outcomes from different perspectives.
Zhu et. al. evaluated 13 algorithms that were introduced

between 2003 to 2018 (detailed below). The algorithms are
compared according to the execution time, whether they
are online/offline, ability to handle large logs, whether they
can parse any log or only logs under specific conditions and
whether they require pre-processing steps. They also ranked
the algorithms according to their performance over a set of
logs that were manually annotated. Moreover, they made the
code used for comparing the algorithms publicly available.
For algorithms that were not open-source, they provided an
implementation following the original papers. A summary
of their results [34] are given in Table 1. A synopsis of each
algorithm is summarized as follows:

SLCT (Simple Logfile Clustering Tool) [31] treats log ab-
straction as a series of (density-based) grouping tasks. Only
two passes over the file are performed, with one used to
build a word vocabulary and a second to create candidates
for grouping based on the frequency of common words.

AEL (Abstracting Execution Logs) [17] considers word
similarity as an indication of event similarity. The task of
log abstraction is reduced to a task of finding similar strings
based on a distance metric. It also uses an anonymization
task to remove easily identifiable words belonging to the log
domain.

IPLoM (Iterative Partitioning Log Mining) [22] begins
with the assumption that all log messages belong to the
same group and iteratively partitions it using heuristics. In
total a 4-step partitioning method is assumed, taking into
account factors such as the size of the log, the frequency of
words, and word/term occurrence.

LKE (Log Key Extraction) [11] is similar to AEL in terms of
considering word similarity as an indication of event similar-
ity. It uses an approach that mixes heuristics and hierarchical
grouping while adding speedups through parallel operation.

LFA (Log File Abstraction) [25] is built as an attempt to
fix SLCT’s shortcomings. Like SLCT, it makes two passes
over the log file, but builds a frequency table that takes both
word and position frequencies into account while grouping.

LogSig [29] treats word frequency and order of appear-
ance as a type of signature for an origin event. As a conse-
quence, the size of a message and positioning of the words
are not considered parameters, i.e. word frequency and order
of appearance are considered to already encapsulate both
concepts.

SHISO (Scalable Handler for Incremental System log) [24]
is a 3-step log classification and abstraction algorithm that
uses a tree structure generated on-the-fly. Each tree node is
filled with a list of words that are extracted from each log
record by splitting it at common separators such as spaces,
quotes, periods, and others.

LogCluster [33] is an improved version of SLCT, i.e. short-
comings such as word position sensitivity and delimiter noise

are addressed. Specifically, a new format for representing log
templates is assumed (registers a minimum and a maximum
number of words that each wildcard symbol (usually ’*’) can
represent in the template).

LenMa (Length Matters) [28] uses the length of the words
in the message as a metric of similarity, as opposed to word
distance. Each line is transformed into a vector containing
all of the lengths of the words in the message. This is com-
pared to others by calculating the cosine similarity of their
respective length vectors.

LogMine [14] was created with the objective of quickly
evaluating large sets of log messages, which led to its use
of MapReduce. After executing an abstraction step based on
domain knowledge, it makes use of the friends-of-friends
algorithm to create message clusters.

Spell (Streaming Parser for Event Logs using an LCS) [9]
is based on the idea that the longest common sub-sequence
(LCS) between log messages is representative of an original
event. New messages are placed into existing groups accord-
ing to matching LCSs, or into new groups if no matching
LCS can be found.

Drain [16] is a 5-step algorithm that uses a fixed-depth
parse tree, avoiding the construction of long and/or unbal-
anced trees that negatively impact performance. Each tree
node is encoded with a parsing rule, which is used during
the algorithms similarity calculation step.

MoLFI (Multi-objective Log message Format Identifica-
tion) [23] observes that the log abstraction problem has two
conflicting objectives: (i) grouping as many messages under
the same event, while also (ii) being very thorough when
defining new events in order to separate more general events
from more specific events. It uses a multi-objective evolu-
tionary search-based approach based on NSGA-II.

Also, El Masri et. al [10] followed a similar approach con-
sidering 17 log analysis algorithms. With the exception of
LenMa [28],1 all 12 algorithms from the study of Zhu et.
al. were considered. In addition, a further five algorithms
were benchmarked: POP [15], HLAer [26], LogHound [32],
Nlp-Ltg [18], and Nlm-Fse [30]. These five algorithms are
summarized as follows:

POP (Parallel Log Parsing) [15] is built on the observation
that most algorithms fail to complete an abstraction task in
a reasonable time period, i.e. do not scale to log files over
200 million lines. It has similar properties to IPLoM, but it
focuses on a parallel implementation using Spark [2].

HLAer (Heterogeneous Log Analyzer) [26] uses an ap-
proach based on hierarchical clustering and pattern recog-
nition. It makes use of a density-based OPTICS algorithm
for clustering, the Smith-Waterman algorithm for pattern
generation, and the Unweighted Pair Group Method with
Arithmetic Mean for generating the event types.

1LenMa was not published in a peer-reviewed venue.

Log Abstraction for Information Security: Heuristics and Reproducibility IWSMR ’21, August 17–20, 2021, All Digital Conference

Table 1. Evaluations performed by Zhu et. al. [34]

Log Parser Year Technique Mode Efficiency Coverage Preprocessing Open Source Industrial Use Average Accuracy
Drain 2017 Parsing Tree Online High YES YES YES NO 86.5%
IPLoM 2012 Iterative partitioning Offline High YES NO NO NO 77.7%
AEL 2008 Heuristics Offline High YES YES NO YES 75.4%
Spell 2016 Longest common subsequence Online High YES NO NO NO 75.1%
LenMa 2016 Clustering Online Medium YES NO YES NO 72.1%
LogMine 2016 Clustering Offline Medium YES YES NO YES 69.4%
SHISO 2013 Clustering Online High YES NO NO NO 66.9%
LogCluster 2015 Frequent pattern mining Offline High YES NO NO NO 66.5%
LFA 2010 Frequent pattern mining Offline High YES NO NO NO 65.2%
SLCT 2003 Frequent pattern mining Offline High NO NO YES NO 63.7%
MoLFI 2018 Evolutionary algorithms Offline Low YES YES YES NO 60.5%
LKE 2009 Clustering Offline Low YES YES NO YES 56.3%
LogSig 2011 Clustering Offline Medium YES NO NO NO 48.2%

LogHound [32] treats logmessages as transactions where
each word and its position are grouped into a single token.
By measuring frequent occurrences of tokens, LogHound
assumes that rare tokens are dynamic values, whereas the
others are static, thus generating the event template.

nlp-ltg (Natural Language Processing–Log Template Gen-
eration) [18] considers the problem of log abstraction as a
problem of labelling sequential data in natural language. It
makes use of Conditional Random Fields (CRF) to classify
static and dynamic fields.

nlm-fse (Neural language Model For Signature Extrac-
tion) [30] trains a character-based neural network to classify
static and dynamic fields. It uses four layers, including one to
embed context into a word to perform the classification, and
a fully connected feed-forward neural network that predicts
the event template.
As per the work of Zhu et. al. [34], El Masri et. al. [10]

also present an initial categorization of the algorithms ac-
cording to their characteristics. However, El Masri et. al. use
more specific properties, such as whether the algorithm re-
quires pre-processing of the data (yes/no/optional) and the
time complexity of the algorithm (computational cost). A
summary of their categorization is provided in Table 2.

3 Reproducibility of the state-of-the-art
In order to evaluate the performance of log abstraction al-
gorithms from the perspective of information security – as
well as their ability to retain information – we needed to
select a set of algorithms that was representative of the state-
of-the-art (and available open-source). Furthermore, it was
desirable to get most implementations from the same source
to reduce the risk of integration errors that could impact
the results. With this in mind, the work of Zhu et. al. [34]
was assumed for replication purposes. It provides not only
the code (available through GitHub on the logpai/logparser
repository), but also the annotated (labelled) datasets used
for benchmarking the algorithms.

Thus, we replicated their experiments using the code and
annotated dataset provided publicly. They measured the per-
formance in the form of classification accuracy as seen in

Table 3. The values obtained in our replication experiments
using the same dataset and algorithms are presented in Ta-
ble 4. During our replication study, while analyzing Android
logs, LogSig could not produce any results after running
for an amount of time comparable to its previous runs over
other logs. Therefore, we were not able to obtain LogSig’s
accuracy for this case.
These results confirm that the replication experiments

obtain similar performance in most cases. However, some
of the obtained results were significantly different, i.e. more
than 10 percentage points over the original. These were high-
lighted in Table 4. Although it is hard to pinpoint what the
causes of the observed differences are, we can assume that
some of them are the result of variations between the sys-
tems used to perform the experiments. However, differences
higher than 10 percentage points are striking given the de-
terministic nature of some of these algorithms. This seems
to indicate that those algorithms producing different results
on the same dataset are less robust [19].

4 Impact of Abstraction
As discussed in the previous sections, different tools have
been developed to address event log management for specific
use cases, such as event monitoring, event archiving, event
information extraction, and event querying. In addition, sev-
eral companies such as Splunk Inc. [6], Apache [2], Elastic
[5], and Solarwinds [4] provide log management products for
machine generated data. These products potentially facilitate
an IT team’s daily tasks, but do not necessarily represent
a comprehensive end-to-end solution for security forensic
analysis or incident reporting. On the one hand, the products
developed for log management are generic and efficient, but
their analytic modules still have much room for improve-
ment. For example, Splunk is able to collect the logs from
the machines and is operating system independent. How-
ever, it only provides the most fundamental analytics such as
dashboards with basic statistics and keyword-based search.
Conversely, the products developed by IT service companies
are highly customized and equipped with more advanced an-
alytics, but they are often adherent to their own IT products.

IWSMR ’21, August 17–20, 2021, All Digital Conference

Table 2. Evaluations performed by El Masri et. al. [10]

Algorithm Pre-processing Parallel mode Time complexity Event types update
Drain YES N/A O(n) online
IPLoM NO NO (parallel mode ready) O(n) re-train, offline (batch mode)
AEL YES NO O(n) re-train, offline (batch mode)
Spell NO N/A O(n) online
LogMine OPTIONAL YES O(n) re-train, offline (batch mode)
SHISO NO N/A O(n) online
LogCluster NO NO O(n) re-train, offline (batch mode)
LFA NO NO O(n) re-train, offline (batch mode)
SLCT NO NO O(n) re-train, offline (batch mode)
MoLFI YES NO O(n2) re-train, offline (batch mode)
LKE YES NO O(n2) incremental; generates new event type
LogSig OPTIONAL NO O(n) re-train, offline (batch mode)
HLAer NO NO (parallel mode ready) O(n2) online
LogHound NO NO - re-train, offline (batch mode)
POP YES YES O(n) re-train, offline (batch mode). Offers solution for new logs detection
nlp-tlg YES N/A O(n) require re-labelling and re-training
nlm-fse NO N/A O(n) incremental re-training

Table 3. Performance results given by Zhu et. al. [34]

HDFS Hadoop Spark Zookeeper OpenStack BGL HPC Thunderbird Windows Linux Mac Android HealthApp Apache OpenSSH Proxifier
Drain 0.998 0.948 0.920 0.967 0.733 0.963 0.887 0.955 0.997 0.690 0.787 0.911 0.780 1 0.788 0.527
IPLoM 1 0.954 0.920 0.962 0.871 0.939 0.824 0.663 0.567 0.672 0.673 0.712 0.822 1 0.802 0.515
AEL 0.998 0.538 0.905 0.921 0.758 0.758 0.903 0.941 0.690 0.673 0.764 0.682 0.568 1 0.521 0.518
Spell 1 0.778 0.905 0.964 0.764 0.787 0.654 0.844 0.989 0.605 0.757 0.919 0.639 1 0.554 0.527
LogMine 0.851 0.870 0.576 0.688 0.743 0.723 0.784 0.919 0.993 0.612 0.872 0.504 0.684 1 0.431 0.517
SHISO 0.998 0.867 0.906 0.660 0.722 0.711 0.325 0.576 0.701 0.701 0.595 0.585 0.397 1 0.619 0.517
LogCluster 0.546 0.563 0.799 0.732 0.696 0.835 0.788 0.599 0.713 0.629 0.604 0.798 0.531 0.709 0.426 0.951
LFA 0.885 0.900 0.994 0.839 0.200 0.854 0.817 0.649 0.588 0.279 0.599 0.616 0.549 1 0.501 0.026
SLCT 0.545 0.423 0.685 0.726 0.867 0.573 0.839 0.882 0.697 0.297 0.558 0.882 0.331 0.731 0.521 0.518
MoLFI 0.998 0.957 0.418 0.839 0.213 0.960 0.824 0.646 0.406 0.284 0.636 0.788 0.440 1 0.500 0.013
LKE 1 0.670 0.634 0.438 0.787 0.128 0.574 0.813 0.990 0.519 0.369 0.909 0.592 1 0.426 0.495
LogSig 0.850 0.633 0.544 0.738 0.200 0.227 0.354 0.694 0.689 0.169 0.478 0.548 0.235 0.582 0.373 0.967
LenMa 0.998 0.885 0.884 0.841 0.743 0.690 0.830 0.943 0.566 0.701 0.698 0.880 0.174 1 0.925 0.508

Table 4. Performance results obtained in the replication study in our work

HDFS Hadoop Spark Zookeeper OpenStack BGL HPC Thunderbird Windows Linux Mac Android HealthApp Apache OpenSSH Proxifier
Drain 0.998 0.948 0.920 0.967 0.733 0.963 0.887 0.955 0.997 0.690 0.787 0.911 0.780 1 0.788 0.527
IPLoM 1 0.952 0.920 0.967 0.320 0.971 0.875 0.951 0.568 0.671 0.772 0.691 0.718 1 0.733 0.504
AEL 0.998 0.869 0.905 0.921 0.758 0.957 0.903 0.941 0.690 0.673 0.764 0.682 0.568 1 0.538 0.495
Spell 1 0.778 0.905 0.964 0.764 0.787 0.654 0.844 0.989 0.605 0.757 0.919 0.639 1 0.554 0.527
LogMine 0.850 0.869 0.575 0.687 0.743 0.724 0.784 0.918 0.992 0.611 0.876 0.504 0.686 1 0.430 0.516
SHISO 0.998 0.867 0.906 0.660 0.722 0.711 0.325 0.576 0.701 0.672 0.595 0.585 0.397 1 0.619 0.517
LogCluster 0.546 0.563 0.798 0.731 0.695 0.835 0.787 0.598 0.713 0.628 0.603 0.797 0.530 0.708 0.425 0.478
LFA 0.885 0.900 0.994 0.839 0.200 0.854 0.817 0.649 0.588 0.279 0.599 0.616 0.549 1 0.501 0.026
SLCT 0.545 0.422 0.685 0.725 0.867 0.572 0.838 0.882 0.696 0.296 0.557 0.881 0.331 0.730 0.521 0.518
MoLFI 0.997 0.937 0.570 0.839 0.213 0.939 0.824 0.651 0.711 0.290 0.659 0.741 0.32 1 0.541 0.013
LKE 1 0.669 0.002 0.854 0.787 0.127 0.845 0.812 0.989 0.518 0.368 0.908 0.591 1 0.425 0.495
LogSig 0.508 0.632 0.543 0.782 0.838 0.232 0.382 0.755 0.681 0.107 0.517 - 0.092 0.730 0.440 0.493
LenMa 0.997 0.885 0.883 0.840 0.732 0.689 0.829 0.943 0.565 0.701 0.698 0.879 0.174 1 0.925 0.516

Considering the increasing heterogeneity, scalability and
complexity of machine generated log data, designing and
developing a comprehensive security event analysis system
with a holistic view is not a trivial task.

When we look at the problem of log abstraction from the
perspective of security forensics and event analysis, using
a holistic view (approach) becomes very important. This
enables security analysts to recognize the correlation of dif-
ferent events and minimize gaps in information supporting
security forensics. Thus, as the next step, we evaluate the log
analysis tools used in our replication study from a holistic

perspective. We recognize that conventional network per-
formance metrics might not provide any insight for such a
holistic view. Moreover, machine generated data (logs) gen-
erally does not include a ‘ground truth’ either. Therefore,
trying to evaluate the algorithms from the perspective of se-
curity forensics and event analysis becomes very challenging.
Nevertheless, we aim to explore this further by designing
new experiments and measurements to address some of the
current limitations.

In order to achieve this, we begin by recognizing that we
need to be able to measure what we call the ability to abstract.
An algorithm can be considered "able to abstract", if it can

Log Abstraction for Information Security: Heuristics and Reproducibility IWSMR ’21, August 17–20, 2021, All Digital Conference

demonstrate acceptable results when abstracting a set of logs
that cover the same domain. To the best of our knowledge,
there are no metrics to measure such an ability. Thus, we
designed an experiment to be able to observe the ability to
abstract by the aforementioned log parsing algorithms. In
this experiment, each algorithm is run over three distinct
sets of logs, each with its own characteristic (indicating the
nature of the log file), as follows:

1. Homogeneous: Logs extracted from a single service
such as the Apache web server.

2. Heterogeneous: Logs extracted from a system run-
ning several services such as Linux syslog files (run-
ning services like web, printer, file system, etc.).

3. Mixed Service: Logs extracted from a range of dis-
tinct services, namelyHTTP, SSH, DNS, FTP and SMTP,
analyzed together (as if they are a single set of logs).

Each of these sets of logs was chosen to represent collec-
tion methods commonly present in enterprise deployments.
Thus, a log parsing and analysis algorithm needs to be able
to abstract the events from these logs into "groups" based
on their shared service/application domains and variability.
Given that each of the aforementioned algorithms yields a
set of groups of logs represented by a template, in a scenario
where no common groups can be formed, the algorithm will
naturally yield as many groups as there are logs in the set.
This means that all logs are different from the algorithm’s
perspective. In this case, an upper bound is set by the max-
imum number of groups that can be found for a given set
of logs. Given the yielded groups, we obtain a result in the
form of the ratio of the yielded groups relative to the upper
bound, as seen in Figure 1.
It should be noted that LogSig and SLCT did not execute

properly during this experiment. For example, LogSig typi-
cally threw exceptions of the form:

Traceback (most recent call last):
File "homogeneous.py", line 51, in <module>
result_LogSig = runLogSig(sample, analysis_dir)
File "/home/ubuntu/log_analysis/algorithms/
LogSig/execution.py", line 331, in run
df = parser.parse(file)

File "/home/ubuntu/log_analysis/algorithms/
LogSig/execution.py", line 280, in parse
self.signatConstr()

File "/home/ubuntu/log_analysis/algorithms/
LogSig/execution.py", line 200, in signatConstr
sig = max(candidateSeq[i].items(),
key=operator.itemgetter(1))[0]

ValueError: max() arg is an empty sequence

This seems to indicate that, at some point, LogSig ran out
of tokens to parse a log line. This leads to it having an empty
sequence, which seems to be the main cause of the exception.
SLCT, on the other hand, does finish execution, but it results

in a single group with "NONE" for its template. Given these
unexpected behaviours, LogSig and SLCT are not considered
hereafter.

These results show the abstraction ability of the remaining
algorithms from the perspective of how much of the log data
they were able to group. For abstraction purposes, the first
issue we consider is whether the number of groups generated
by an algorithm is more than 50% of the total number of log
lines given in a set. If this is the case, it means that there is,
at least, one group generated by the algorithm that contains
only a single log line. In other words, given an algorithm, 𝐴,
a set of log lines, 𝐿, and the groups generated by 𝐴 over 𝐿,
𝐺 (𝐴, 𝐿) = [𝑔0, 𝑔1, ..., 𝑔𝑛], we have:

|𝐺 (𝐴, 𝐿) | > |𝐿 |
2

=⇒ ∃𝑖 for which |𝑔𝑖 | = 1

A result that is higher than 50% indicates that the algo-
rithm is not able to identify a similarity between the log
lines when creating groups. Therefore – given the nature of
the logs used for this experiment – such algorithm does not
demonstrate "ability to abstract". We called this the 50% rule.

Moreover, whenwe analyze the output of these algorithms
more closely, we recognize that LogCluster yielded results
where all message lines belonged to the same group, which
was represented by a wildcard template ("*"). In other words,
LogCluster was not able to identify any differences between
these log messages. We argue that this deems LogCluster
unhelpful from a holistic perspective.
In summary, AEL, Drain, LFA, SHISO and Spell are the

only algorithms that demonstrate "ability to abstract" and
are therefore used in the remaining experiments.

5 Heuristics
In security, it is not only important to identify anomalies
and threats, but also to understand the reasons behind them.
Let us consider, for example, the following log message:

2021-01-01 12:00 - User John logged in to
machine A using TELNET.

There might be several reasons why this message could
be considered anomalous: perhaps the use of TELNET as a
remote access protocol is uncommon; maybe the user John is
not supposed to be accessing machine A; or even because no
one should be accessing the infrastructure on January 1st. In
summary, different elements in a log message or their corre-
lations could indicate suspicious events and could be used for
forensic analysis. Thus, we propose the use of the following
heuristics based on the different log message elements:

• Time - Events that occur in unexpected or uncommon
timestamps. Events outside of working hours, during
holidays, or just out of a commonly observed schedule
all fit this category.

• Actor - Events involving one or more unexpected or
uncommon users, devices and its combinations. An

IWSMR ’21, August 17–20, 2021, All Digital Conference

Figure 1. Results on "Ability to Abstract"

unknown user attempting to access a machine, two
servers that should not know each other attempting to
communicate, or a valid user accessing a valid machine
which they are not supposed to, all fit this category.

• Protocol - Events that are related to an unexpected
or uncommon technology. An access using TELNET
instead of SSH, an unencrypted HTTP request to a
secure server, or a port scan all fit this category.

Given the above heuristics, we argue that a log abstraction
algorithm could be more robust if it follows a heuristics(s)
consistently for grouping the log messages. Our reasoning is
that an algorithm which is able to follow a heuristic provides
a different perspective on why it considers a log message
to be anomalous. That is, it gives further meaning to the
event templates it generates, other than just static measure of
field similarity. This is typically referred as explain/interper-
ability and is very important to form a holistic view for an
enterprise security system.

5.1 Determining Heuristics
Let’s assume a human expert analyzing a set of event tem-
plates in order to determine whether they follow a certain
heuristic. If so, it is reasonable to assume that they would
look for keywords (in log messages) related to one of the
heuristics. For example, given an event template:

[Apache] Connection * over HTTP

It is reasonable to assume that the static words "Apache"
and "HTTP" would indicate that this template is based on
a Protocol heuristic since all of the messages grouped here
would have to match this template.

Given that it is not feasible to expect human experts to
analyze/categorize every event template generated by a log
abstraction algorithm manually, we developed a script to
mimic this behaviour, i.e. identifying keywords that indicate
the heuristic used for the grouping of log messages by a
given log abstraction algorithm employed in our evaluations.

Table 5. Number of times each heuristic is used for abstrac-
tion given the different nature of log files

Algorithm Dataset Time Actor Protocol Undefined
AEL Heterogeneous 18 (100%) 0 (0%) 0 (0%) 0 (0%)
AEL Homogeneous 0 (0%) 2 (25%) 6 (75%) 0 (0%)
AEL Mixed 0 (0%) 9 (42%) 2 (9%) 10 (47%)
Drain Heterogeneous 109 (87%) 0 (0%) 4 (3%) 12 (9%)
Drain Homogeneous 0 (0%) 2 (22%) 7 (77%) 0 (0%)
Drain Mixed 1 (3%) 11 (37%) 7 (24%) 10 (34%)
LFA Heterogeneous 39 (100%) 0 (0%) 0 (0%) 0 (0%)
LFA Homogeneous 0 (0%) 4 (11%) 28 (82%) 2 (5%)
LFA Mixed 0 (0%) 2 (5%) 3 (8%) 29 (85%)
SHISO Heterogeneous 120 (97%) 0 (0%) 3 (2%) 1 (1%)
SHISO Homogeneous 0 (0%) 7 (87%) 1 (12%) 0 (0%)
SHISO Mixed 0 (0%) 10 (35%) 6 (21%) 12 (42%)
Spell Heterogeneous 65 (86%) 0 (0%) 1 (1%) 9 (12%)
Spell Homogeneous 0 (0%) 0 (0%) 28 (100%) 0 (0%)
Spell Mixed 10 (3%) 221 (67%) 28 (8%) 70 (21%)

To this end, for every event template generated by a log
abstraction algorithm, a list of words is made by parsing
it on every space. Then, each of these words is compared
to regular expressions that are associated with one of the
three possible heuristics. No two expressions will accept the
same string and strings that do not match any expression get
discarded. Finally, the count of words that is associated with
each heuristic is compared and a simple majority determines
what heuristic is representative of that template. In case of a
tie, the template is associated with an "Undefined" heuristic.

5.2 Measuring Heuristics
Having identified a subset of algorithms (Section 4) that
have the "ability to abstract", we evaluated them using the
proposed heuristics. Table 5 summarizes the results of the
five algorithms over the three sets of log files.

It is apparent that there were only a few instances where
an algorithm was consistent in terms of what heuristic it
used to group the log messages. On the instances where the
evaluation is done over homogeneous datasets, we see high

Log Abstraction for Information Security: Heuristics and Reproducibility IWSMR ’21, August 17–20, 2021, All Digital Conference

percentages mostly for the "protocol" heuristic, the only ex-
ception being SHISO, which favours the "actor" heuristic. On
the other hand, when the heterogeneous datasets are evalu-
ated, we see a high percentage of the "time" heuristic being
used by these algorithms. For the mixed datasets (extremely
heterogeneous), however, results are mostly showing the "un-
defined" heuristic, i.e. many ties. This seems to indicate that
log abstraction algorithms are not able to choose a heuristic
as the dataset gets more and more heterogeneous (in terms of
the services and applications generating the log messages).

In summary, it seems that no algorithm shows consistency
in terms of what heuristic it uses to generate its groups. We
argue that this is because of the underlying objective of gen-
erating event templates, which are composed of recurring
words in log messages. That makes the format and the word-
ing of the log very influential in determining the resulting
heuristic. Unfortunately, this might not be helpful from a
holistic perspective for analyzing log files. It does not allow a
human expert to more easily determine what message group-
ings are more likely to indicate suspicious behaviours given
the policies of an enterprise.

5.3 Heuristics on a security-centered dataset
The results of Section 5.2 appear to indicate that the choice of
dataset has a significant impact on the behaviour of each log
abstraction algorithm. In order to further evaluate this, we
employed additional log files specific to the domain of infor-
mation security. In particular, we use log files of applications
that would be deployed in a small-scale enterprise environ-
ment. The logs selected for this experiment include DNS,
Firewall, FTP, HTTP, Malformed HTTP packets, SNORT IDS,
SSH, SSL, Linux System Logs, macOS System Logs, Windows
System Logs2, and Cyber-attacks over HTTP3. To this end,
two thousand randomly selected log messages from each
log file were used for the following evaluations. The results
obtained can be seen in Table 6, where the count of heuristics
used are given.

These results seem to indicate that, in most cases, different
algorithms choose the same heuristic, namely undefined, in
order to group a given log file. For example, all algorithms
yield groups with undefined heuristics on SSH andWindows
logs. In fact, most of the algorithms yield groups with unde-
fined heuristics on most of the logs used. This again shows
their inconsistency in terms of chosen method for abstrac-
tion. The few exceptions include Drain on Cyber-attack logs
and LFA on macOS logs, that show a majority of groups with
a non-undefined heuristic (protocol and time, respectively).

The results suggest that these algorithms are highly depen-
dent on the characteristics of log files. Besides not showing a
consistent choice of heuristic over the results of any individ-
ual log, no algorithm seems to show any sort of preference

2All logs will be made publicly available upon the acceptance of the paper
3The Attack Challenge - ECML/PKDD 2007 [12]

Table 6. Number of times each heuristic is used for abstrac-
tion using small-scale enterprise information security logs

Algorithm Dataset Protocol Undefined Time Actor
AEL Apache 0 5 4 0
AEL DNS 0 3 1 0
AEL Firewall 4 1 1 0
AEL FTP 0 6 0 1
AEL HTTP 6 10 0 0
AEL Linux 0 14 4 0
AEL macOS 5 2 37 3
AEL Cyber-attack 3 2 0 0
AEL SNORT 8 12 1 0
AEL SSH 1 8 1 0
AEL SSL 1 3 2 1
AEL Malformed 1 2 0 0
AEL Windows 1 13 2 0
Drain Apache 14 35 45 0
Drain DNS 8 2 0 1
Drain Firewall 13 8 1 0
Drain FTP 0 5 0 13
Drain HTTP 31 4 0 3
Drain Linux 5 25 191 1
Drain macOS 18 75 199 5
Drain Cyber-attack 76 0 1 0
Drain SNORT 33 18 9 0
Drain SSH 4 22 16 0
Drain SSL 3 2 3 3
Drain Malformed 6 12 1 14
Drain Windows 4 19 9 1
LFA Apache 0 5 31 0
LFA DNS 20 8 0 0
LFA Firewall 5 19 1 0
LFA FTP 2 9 0 8
LFA HTTP 4 32 0 19
LFA Linux 0 28 0 0
LFA macOS 0 0 42 0
LFA Cyber-attack 7 3 0 0
LFA SNORT 0 28 0 0
LFA SSH 0 10 5 0
LFA SSL 18 7 0 7
LFA Malformed 0 7 0 6
LFA Windows 0 24 0 0
SHISO Apache 0 5 15 0
SHISO DNS 1 2 0 0
SHISO Firewall 4 1 1 0
SHISO FTP 2 4 0 11
SHISO HTTP 22 6 1 0
SHISO Linux 3 16 41 1
SHISO macOS 19 57 201 8
SHISO Cyber-attack 3 2 0 0
SHISO SNORT 34 29 14 0
SHISO SSH 8 10 6 0
SHISO SSL 2 2 3 3
SHISO Malformed 1 3 0 0
SHISO Windows 2 20 14 0
Spell Apache 2 10 44 0
Spell DNS 13 248 66 205
Spell Firewall 3 1 1 0
Spell FTP 1 7 1 38
Spell HTTP 1274 23 1 31
Spell Linux 7 53 200 0
Spell macOS 38 233 149 9
Spell Cyber-attack 1461 24 0 0
Spell SSH 7 18 14 0
Spell SSL 0 118 53 25
Spell Malformed 9 22 26 38
Spell Windows 5 23 6 1

IWSMR ’21, August 17–20, 2021, All Digital Conference

for a heuristic over multiple logs. Thus, for any algorithm,
the most used heuristic seems to vary from log file to log file.
Lastly, we can observe that even across different algorithms,
the same log file tends to be grouped by, mainly, the same
heuristics.

5.4 Best Practice Security Recommendations
In the previous sections, we evaluated log parsing and ab-
straction algorithms for qualities that are essential for best
practice security recommendations. To this end, a log pars-
ing algorithm needs to be able to abstract regardless of the
nature of a log file, that is, whether it deals with application
logs, service logs or systems logs, it should be able to balance
their similarities and/or differences as indicated by the 50%
rule. Moreover, the algorithm needs to be able to follow a
specific heuristic despite the presence of log messages caused
by multiple sources (processes). In other words, given a het-
erogeneous or mixed system/service log file, the resulting
groupings identified by the algorithm need to signal a clear
heuristic. Finally, the algorithm needs to be able to describe
given security-centered data using the previously introduced
heuristics (time, actor and protocol). To be able to capture
these recommendations in our analysis, we use the following
metrics:

1. Ability to Abstract - AA: The ability to respect the
50% rule.

2. Ability to Handle Heterogeneity - HH: The abil-
ity to use produce groups using, in its majority, the
same heuristic when analyzing heterogeneous / mixed
service log files.

3. Ability to Describe using Heuristic - DH: The abil-
ity to yield groups that are not associated with an
undefined heuristic.

Next, we evaluate the aforementioned log parsing algo-
rithms using these three metrics. The ability to abstract was
verified based on the results presented in section 4, Figure
1. The ability to handle heterogeneity was verified based on
the results in section 5, Table 5. The ability to describe using
heuristics was verified based on the results in section 5.3,
Table 6. The evaluation results found are presented in Table
7.

As these results demonstrate, the algorithms explored in
this work only partially display the aforementioned abilities
for best security practice recommendations. This indicates
that more research is necessary to be able to achieve a holistic
approach for operational security purposes not only in terms
of improved or new algorithms but also in terms of security
metrics to evaluate such algorithms.

6 Conclusion
The collection of log messages regarding the operation of
deployed hardware/software is an integral component to the
identification and understanding of security incidents in any

Table 7. Analysis of algorithms in terms of abilities

Algorithm AA HH DH
AEL ✓ ✗ ✗
Drain ✓ ✗ ✗
LFA ✓ ✗ ✗
SHISO ✓ ✗ ✗
Spell ✓ ✗ ✗

enterprise. The analysis and abstraction of such logs, despite
widespread use and study, does not directly account for the
individualities of the domain of information security which,
in return, limits its applicability on the field.
In this work, we focused on the analysis of the current

log parsing (grouping) and abstraction state-of-the-art algo-
rithms based on not only their performance on annotated
data but also in terms of best practice security recommenda-
tions. We observed that conventional performance metrics
such as computational cost, accuracy and so on are important
but not enough to provide insight from a holistic point of
view. Thus, we designed and proposed three metrics based
on security heuristics including Ability to Abstract, Abil-
ity to Handle Heterogeneity and Ability to Describe using
Heuristics. Our results replicating the state-of-the-art from
the literature show that while 11 of the 17 algorithms could
run robustly from the perspective of the performance metric,
only 5 of them have the ability to abstract. On the other hand,
none has neither the ability to handle heterogeneity nor to
describe using security heuristics. Future work will explore
improvements to the algorithms to enable them to handle
heterogeneity and describe as well as identify heuristics for
best practice security recommendations. Moreover, the use
of other log files and security metrics will also be studied.

Acknowledgement
This research was enabled in part by support provided by
2Keys Inc. and the Natural Science and Engineering Research
Council of Canada (NSERC) Alliance Grant. The first author
gratefully acknowledges the support by the province of Nova
Scotia. The research is conducted as part of the Dalhousie
NIMS Lab at: https://projects.cs.dal.ca/projectx/.

References
[1] 2016. Datadog. https://www.datadoghq.com/
[2] 2021. Apache Spark™ - Unified Analytics Engine for Big Data. https:

//spark.apache.org/
[3] 2021. Fluentd - Open Source Data Collector. https://www.fluentd.org/
[4] 2021. Log Analysis: Log Management by Loggly. https://www.loggly.

com/
[5] 2021. Logstash: Collect, Parse, Transform Logs. https://www.elastic.

co/logstash
[6] 2021. Splunk - Cloud-Based Data Platform for Cybersecurity, IT Oper-

ations and DevOps. https://www.splunk.com/
[7] Riyad Alshammari and A. Nur Zincir-Heywood. 2012. The Impact

of Evasion on the Generalization of Machine Learning Algorithms
to Classify VoIP Traffic. In 21st International Conference on Computer

https://www.datadoghq.com/
https://spark.apache.org/
https://spark.apache.org/
https://www.fluentd.org/
https://www.loggly.com/
https://www.loggly.com/
https://www.elastic.co/logstash
https://www.elastic.co/logstash
https://www.splunk.com/

Log Abstraction for Information Security: Heuristics and Reproducibility IWSMR ’21, August 17–20, 2021, All Digital Conference

Communications and Networks, ICCCN 2012, Munich, Germany, July 30 -
August 2, 2012. IEEE, 1–8. https://doi.org/10.1109/ICCCN.2012.6289243

[8] Himel Dev and Zhicheng Liu. 2017. Identifying Frequent User Tasks
from Application Logs. Association for Computing Machinery, New
York, NY, USA.

[9] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event
logs. In 2016 IEEE 16th International Conference on Data Mining (ICDM).
IEEE, 859–864.

[10] Diana El-Masri, Fabio Petrillo, Yann-Gaël Guéhéneuc, Abdelwahab
Hamou-Lhadj, and Anas Bouziane. 2020. A systematic literature review
on automated log abstraction techniques. Information and Software
Technology 122 (2020), 106276.

[11] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution
anomaly detection in distributed systems through unstructured log
analysis. In 2009 ninth IEEE international conference on data mining.
IEEE, 149–158.

[12] Brian Gallagher and Tina Eliassi-Rad. 2009. Classification of http
attacks: a study on the ECML/PKDD 2007 discovery challenge. Techni-
cal Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[13] Fariba Haddadi and A. Nur Zincir-Heywood. 2016. Benchmarking
the Effect of Flow Exporters and Protocol Filters on Botnet Traffic
Classification. IEEE Syst. J. 10, 4 (2016), 1390–1401. https://doi.org/10.
1109/JSYST.2014.2364743

[14] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei
Jiang, andAbdullahMueen. 2016. Logmine: Fast pattern recognition for
log analytics. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. 1573–1582.

[15] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. 2017.
Towards automated log parsing for large-scale log data analysis. IEEE
Transactions on Dependable and Secure Computing 15, 6 (2017), 931–
944.

[16] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain:
An online log parsing approach with fixed depth tree. In 2017 IEEE
International Conference on Web Services (ICWS). IEEE, 33–40.

[17] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder
Flora. 2008. An automated approach for abstracting execution logs
to execution events. Journal of Software Maintenance and Evolution:
Research and Practice 20, 4 (2008), 249–267.

[18] Satoru Kobayashi, Kensuke Fukuda, and Hiroshi Esaki. 2014. Towards
an NLP-based log template generation algorithm for system log anal-
ysis. In Proceedings of The Ninth International Conference on Future
Internet Technologies. 1–4.

[19] Duc C. Le and Nur Zincir-Heywood. 2020. A Frontier: Dependable, Re-
liable and Secure Machine Learning for Network/System Management.
J. Netw. Syst. Manag. 28, 4 (2020), 827–849.

[20] Chris Lonvick. 2001. RFC3164: The BSD Syslog Protocol.
[21] Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evangelos E. Mil-

ios. 2012. A Lightweight Algorithm for Message Type Extraction in
System Application Logs. IEEE Trans. Knowl. Data Eng. 24, 11 (2012),
1921–1936. https://doi.org/10.1109/TKDE.2011.138

[22] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E
Milios. 2009. Clustering event logs using iterative partitioning. In Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 1255–1264.

[23] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel
Briand, and Raimondas Sasnauskas. 2018. A search-based approach
for accurate identification of log message formats. In 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC). IEEE,
167–16710.

[24] Masayoshi Mizutani. 2013. Incremental mining of system log format.
In 2013 IEEE International Conference on Services Computing. IEEE,
595–602.

[25] Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines
to log event types for mining software system logs. In 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010). IEEE,
114–117.

[26] Xia Ning, Geoff Jiang, Haifeng Chen, and Kenji Yoshihira. 2014.
1HLAer: a System for Heterogeneous Log Analysis. (2014).

[27] K Savitha and MS Vijaya. 2014. Mining of web server logs in a dis-
tributed cluster using big data technologies. International Journal of
Advanced Computer Science and Applications (IJACSA) 5, 1 (2014).

[28] Keiichi Shima. 2016. Length matters: Clustering system log messages
using length of words. arXiv preprint arXiv:1611.03213 (2016).

[29] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating
system events from raw textual logs. In Proceedings of the 20th ACM
international conference on Information and knowledge management.
785–794.

[30] Stefan Thaler, Vlado Menkonvski, and Milan Petkovic. 2017. Towards
a neural language model for signature extraction from forensic logs.
In 2017 5th International Symposium on Digital Forensic and Security
(ISDFS). IEEE, 1–6.

[31] Risto Vaarandi. 2003. A data clustering algorithm for mining pat-
terns from event logs. In Proceedings of the 3rd IEEE Workshop on IP
Operations & Management (IPOM 2003)(IEEE Cat. No. 03EX764). Ieee,
119–126.

[32] Risto Vaarandi. 2008. Mining event logs with slct and loghound. In
NOMS 2008-2008 IEEENetwork Operations andManagement Symposium.
IEEE, 1071–1074.

[33] Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering
and pattern mining algorithm for event logs. In 2015 11th International
conference on network and service management (CNSM). IEEE, 1–7.

[34] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng,
and Michael R. Lyu. 2019. Tools and Benchmarks for Automated Log
Parsing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 121–130.
https://doi.org/10.1109/ICSE-SEIP.2019.00021

https://doi.org/10.1109/ICCCN.2012.6289243
https://doi.org/10.1109/JSYST.2014.2364743
https://doi.org/10.1109/JSYST.2014.2364743
https://doi.org/10.1109/TKDE.2011.138
https://doi.org/10.1109/ICSE-SEIP.2019.00021

	Abstract
	1 Introduction
	2 Related Works
	3 Reproducibility of the state-of-the-art
	4 Impact of Abstraction
	5 Heuristics
	5.1 Determining Heuristics
	5.2 Measuring Heuristics
	5.3 Heuristics on a security-centered dataset
	5.4 Best Practice Security Recommendations

	6 Conclusion
	References

